Iterative Least Squares Estimator of Binary Choice Models: a Semi-Parametric Approach
نویسندگان
چکیده
Most existing semi-parametric estimation procedures for binary choice models are based on the maximum score, maximum likelihood, or nonlinear least squares principles. These methods have two problems. They are difficult to compute and they may result in multiple local optima because they require optimizing nonlinear objective functions which may not be unimode. These problems are exacerbated when the number of explanatory variables increases or the sample size is large (Manski, 1975, 1985; Manski and Thompson, 1986; Cosslett, 1983; Ichimura, 1993; Horowitz, 1992; and Klein and Spady, 1993). In this paper, we propose an easy-to-compute semi-parametric estimator for binary choice models. The proposed method takes a completely different approach from the existing methods. The method is based on a semi-parametric interpretation of the Expectation and Maximization (EM) principle (Dempster et al, 1977) and the least squares approach. By using the least squares method, the proposed method computes quickly and is immune to the problem of multiple local maxima. Furthermore, the computing time is not dramatically affected by the number of explanatory variables. The method compares favorably with other existing semiparametric methods in our Monte Carlo studies. The simulation results indicate that the proposed estimator is, 1) easy-to-compute and fast, 2) insensitive to initial estimates, 3) appears to be √ n-consistent and asymptotically normal, and, 4) better than other semi-parametric estimators in terms of finite sample performances. The distinct advantages of the proposed method offer good potential for practical applications of semi-parametric estimation of binary choice models.
منابع مشابه
Hammerstein System Identification by a Semi-Parametric Method
A semi-parametric algorithm for identification of Hammerstein systems in the presence of correlated noise is proposed. The procedure is based on the non-parametric kernel regression estimator and the standard least squares. The advantages of the method in comparison with the standard non-parametric approach are discussed. Limit properties of the proposed estimator are studied, and the simulatio...
متن کاملSimultaneous robust estimation of multi-response surfaces in the presence of outliers
A robust approach should be considered when estimating regression coefficients in multi-response problems. Many models are derived from the least squares method. Because the presence of outlier data is unavoidable in most real cases and because the least squares method is sensitive to these types of points, robust regression approaches appear to be a more reliable and suitable method for addres...
متن کاملLocal Nonlinear Least Squares : Using Parametric Information
We introduce a new nonparametric regression estimator that uses prior information on regression shape in the form of a parametric model. In eeect, we nonparametrically encompass the parametric model. We obtain estimates of the regression function and its derivatives along with local parameter estimates that can be interpreted from within the parametric model. We establish the uniform consistenc...
متن کاملSemiparametric Least Squares Estimation of Monotone Single Index Models and Its Application to the Itelative Least Squares Estimation of Binary Choice Models
The Semiparametric Least Squares (SLS) estimation for single index models is studied. Applying the isometric regression by Ayer et al (1955), the method minimizes the mean squared errors with respect to both finite and infinite dimensional parameters. A proof of consistency and an upper bound of convergence rates is offered. As an application example of the SLS estimation, asymptotic normality ...
متن کاملSemiparametric Qualitative Response Model Estimation with Unknown Heteroscedasticity or Instrumental Variables
This paper provides estimators of discrete choice models, including binary, ordered, and multinomial response (choice) models. The estimators closely resemble ordinary and two stage least squares. The distribution of the models latent variable error is unknown and may be related to the regressors, e.g., the model could have errors that are heteroscedastic or correlated with regressors. The est...
متن کامل